Exploratory Data Analysis

Maneesh Agrawala

CS 448B: Visualization
Winter 2020

1

A2: Exploratory Data Analysis

Use Tableau to formulate $\&$ answer questions
First steps
Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile data
Iterate as needed
Create visualizations
Interact with data
Refine questions

Author a report
Screenshots of most insightful views (10+)
Include titles and captions for each view
Due before class on Jan 27, 2020

Exploratory Data Andysis

3

The Rise of Statistics (1900-1950s)

Rise of formal methods in statistics and social science - Fisher, Pearson, ...

Litłle innovation in graphical methods

A period of application and popularization

Graphical methods enter textbooks, curricula, and mainstream use

5

7

9

13

Dafa Wrangling

Bureau of Justice Statistics - Data online http://bjs.ojp.usdoj.gov/						
Reported crime in Alabama						
$\begin{aligned} & \text { year } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Population } \\ & 4525375 \quad 4029.3 \end{aligned}$	Property 987 2732.4	$\begin{aligned} & \text { rate } \\ & 309.9 \end{aligned}$	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
2005	45483273900	955.82656	289			
2006	45990303937	968.92645 .1	322.9			
2007	46278513974.9	980.22687	307.7			
2008	46619004081.9	$1080.7 \quad 2712.6$	288.6			
Reported crime in Alaska						
$\begin{aligned} & \text { rear } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Population } \\ & 657755 \quad 3370.9 \end{aligned}$	Property crime $573.6 \quad 2456.7$	$\begin{aligned} & \text { rate } \\ & 340.6 \end{aligned}$	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
2005	6632533615	622.82601	391			
2006	6700533582	$615.2 \quad 2588.5$	378.3			
$\begin{aligned} & 2007 \\ & 2008 \end{aligned}$	683478 3373.9 686293 2928.3	$\begin{array}{ll} 538.9 & 2480 \\ 470.9 & 2219.9 \end{array}$	355.1 237.5			
Reported crime in Arizona						
Year	Population	Property crime	rate	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
2005	59530074827.	$946.2{ }^{9958}{ }^{\text {2 }}$	922.5			
2006	61663184741.6	953.2874 .1	914.4			
2007	63387554502.6	935.42780 .5	786.7			
2008	65001804087.3	894.22605 .3	587.8			
Reported crime in Arkansas						
$\begin{aligned} & \text { year } \\ & 2004 \end{aligned}$	population 27500004033.1	Property crime 1096.42699 .7	$\begin{aligned} & \text { rate } \\ & 237 \end{aligned}$	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
2005	27757084068	1085.12720	262			
2006	28108724021.6	$1154.4 \quad 2596.7$	270.4			
2007	28347973945.5	$1124.4 \quad 2574.6$	246.5			
2008	28553903843.7	$1182.7 \quad 2433.4$	227.6			
Reported crime in California						
year	Population 35842038	Property crime $3423.9 \quad 686.1$	$\begin{aligned} & \text { rate } \\ & 2033.1 \end{aligned}$	$\begin{aligned} & \text { Burg7ary rate } \\ & 704.8 \end{aligned}$	Larceny-theft rate	Motor vehicle theft rate
2005	36154147	3321 692.9	1915	712		
2006	36457549	3175.2676 .9	1831.5	666.8		
2007	$\begin{aligned} & 36553215 \\ & 36756666 \end{aligned}$	$\begin{array}{ll} 3032.6 & 648.4 \\ 2940.3 & 646.8 \end{array}$	1784.1	600.2 523.8		
Reported crime in colorado						
$\begin{aligned} & \text { year } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Population } \\ & 46018213918.5 \end{aligned}$	$\begin{aligned} & \text { property crime } \\ & 717.3 \text { 2679.5 } \end{aligned}$	rate 521.6	Burglary rate	Larceny-theft rate	Motor vehicle theft rate

15

DataWrangler			
ransform Script Lheet beat			
Split data repeatedly on newline isto rows	(1) Year	- extract	(1) Property_crime rate
	0 Reported crime in Alaband	Alabana	
	12004		4029.3
Split split repeatedly on \%	22005		3900
	32006		3937
Promote row 0 to header	42007		3974.9
Delete empty rows	52008		4881.9
	6 Reported crime in Alaska	Alaska	
	72004		3370.9
	82005		3615
	92006		3582
Extract from Year after 7 n '	102007		3373.9
	112008		2928.3
Extract from Year after ' in '	12 Reported crime in Arizona	Arizona	
Cut from Year atter 'in'	132004		5073.3
	142005		4827
Cut from Year atter ' in *	152006		4741.6
	162007		4502.6
5 plat Year atter 'in '	172088		4887.3
Split Year atter ' in *	18 geported crime in Arkansos	Arkansas	
	192004		4633.1
	202005		4668
	212006		4021.6
	222007		3945.5
	232008		3843.7
	24 Reported crime in Collfornia	californte	
	252004		3423.9
	262005		3321
	272006		3175.2
	282007		3032.6
	292008		2940.3
	30 semactad crime in falaradn.	Colacodo	

Data "Wrangling"

One often needs to manipulate data prior to analysis. Tasks include reformatting, cleaning, quality assessment, and integration

Some approaches:
Writing custom scripts
Manual manipulation in spreadsheets
Trifacta Wrangler: http://trifacta.com/products/wrangler/ Google Refine: hitp://openrefine.org

How to gauge the quality of a visualization?

"The first sign that a visualization is good is that it shows you a problem in your data...
...every successful visualization that l've been involved with has had this stage where you realize, "Oh my God, this data is not what I thought it would be!" So already, you've discovered something."

- Martin Wattenberg

19

21

22

Visualize Friends by School?

Data Quality Hurdles

$$
\begin{array}{ll}
\text { Missing Data } & \text { no measurements, redacted, ...? } \\
\text { Erroneous Values } & \text { misspelling, outliers, ...? } \\
\text { Type Conversion } & \text { e.g., zip code to lat-lon } \\
\text { Entity Resolution } & \text { diff. values for the same thing? } \\
\text { Data Integration } & \text { effort/errors when combining data } \\
\text { LESSON: Anticipate problems with your data. } \\
\text { Many research problems around these issues! }
\end{array}
$$

Analysis Example: Effectiveness of Antibiotics

Antibiotic Effectiveness: The Data

Genus of Bacteria	String
Species of Bacteria	String
Antibiotic Applied	String
Gram-Staining	Pos / Neg
Min. Inhibitory Concent. (g)	Number
Collected prior to 1951	

What questions might we ask?

Table 1: Burtin's data. Bacteria	Antibiotic			Gram Staining
	Penicillin	Streptomycin	Neomycin	
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schotrnuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus viridans	0.005	10	40	positive

Will Burtin, 1951

	Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
	Aerobacter aerogenes	870	1	1.6	-
	Brucella abortus	1	2	0.02	-
	Bacillus anthracis	0.001	0.01	0.007	+
	Diplococcus pneumoniae	0.005	11	10	+
	Escherichia coli	100	0.4	0.1	-
	Klebsiella pneumoniae	850	1.2	1	-
	Mycobacterium tuberculosis	800	5	2	-
	Proteus vulgaris	3	0.1	0.1	-
	Pseudomonas aeruginosa	850	2	0.4	-
	Salmonella (Eberthella) typhosa	1	0.4	0.008	-
	Salmonella schottmuelleri	10	0.8	0.09	-
	Staphylococcus albus	0.007	0.1	0.001	+
	Staphylococcus aureus	0.03	0.03	0.001	+
	Streptococcus fecalis	1	1	0.1	+
	Streptococcus hemolyticus	0.001	14	10	+
	Streptococcus viridans	0.005	10	40	+

How do the drugs compare?

Will Burtin, 1951

Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	-
Brucella abortus	1	2	0.02	-
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	-
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	-
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

Radius: 1/log(MIC)
Bar Color: Antibiotic
Background Color: Gram Staining

39

41

How do the bacteria group w.r.t. resistance? Do different drugs correlate?

Wainer \& Lysen
American Scientist, 2009

Lessons

Exploratory Process

1 Construct graphics to address questions
2 Inspect "answer" and assess new questions
3 Repeat!
Transform the data appropriately (e.g., invert, log)
"Show data variation, not design variation" -Tufte

Tableau / Polaris

Tableau

Research at Stanford: "Polaris" by Stolte, Tang \& Hanrahan.

Tableau

81

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa
Use smart defaults for visual encodings

Can also suggest more encodings upon request (ShowMe - Like APT)

Dałaseł

- Federal Elections Commission Receipts
- Every Congressional Candidate from 1996 to 2002
- 4 Election Cycles
- 9216 Candidacies

Data Set Schema

- Year (Qi)
- Candidate Code (N)
- Candidate Name (N)
- Incumbent / Challenger / Open-Seat (N)
- Party Code (N) [1=Dem,2=Rep,3=Other]
- Party Name (N)
- Total Receipts (Qr)
- State (N)
- District (N)
- This is a subset of the larger data set available from the FEC, but should be sufficient for the demo

Hypotheses?

What might we learn from this data?

Hypotheses?

What might we learn from this data?

- Have receipts increased over time?
- Do democrats or republicans spend more?
- Candidates from which state spend the most money?

Tableau Demo

Specifying Table Configurations

Operands are names of database fields
Each operand interpreted as a set \{...\}
Data is either O or Q and treated differently
Three operafors:
concatenation (+) cross product (x) nest (/)

89

91

93

Table Algebra

The operators (,$+ x_{l} /$) and operands (O, Q) provide an algebra for tabular visualization

Algebraic statements are mapped to Visualizations - trellis partitions, visual encodings Queries - selection, projection, group-by

In Tableau, users make statements via drag-and-drop Users specify operands NOT operators! Operators are inferred by data type (O, Q)

